Linear Regression Equation

The measure of the extent of the relationship between two variables is shown by the correlation coefficient. The range of this coefficient lies between -1 to +1 . This coefficient shows the strength of the association of the observed data for two variables.

A linear regression line equation is written in the form of:
$\mathbf{Y}=\mathbf{a}+\mathbf{b X}$
where X is the independent variable and plotted along the x -axis
Y is the dependent variable and plotted along the y-axis
The slope of the line is b, and a is the intercept (the value of y when $x=0$).

Least Square Regression Line or Linear Regression Line

The most popular method to fit a regression line in the XY plot is the method of least-squares. This process determines the best-fitting line for the noted data by reducing the sum of the squares of the vertical deviations from each data point to the line. If a point rests on the fitted line accurately, then its perpendicular deviation is 0 . Because the variations are first squared, then added, their positive and negative values will not be cancelled.

Linear regression determines the straight line, called the least-squares regression line or LSRL, that best expresses observations in a bivariate analysis of data set. Suppose Y is a dependent variable, and X is an independent variable, then the population regression line is given by;
$\mathrm{Y}=\mathrm{B}_{0}+\mathrm{B}_{1} \mathrm{X}$
Where
B_{0} is a constant
B_{1} is the regression coefficient
If a random sample of observations is given, then the regression line is expressed by;
$\hat{y}=b_{0}+b_{1} x$
where b_{0} is a constant, b_{1} is the regression coefficient, x is the independent variable, and \hat{y} is the predicted value of the dependent variable.

